Benchmark Results – ArangoDB vs. Neo4j : ArangoDB up to 8x faster than Neo4j

Estimated reading time: 6 minutes

This document presents the benchmark results comparing the ArangoDB’s Graph Analytics Engine (GAE) against Neo4j. The GAE is just one component of ArangoDB’s Data Science Suite. 

This reproducible1 benchmark aims to provide a neutral and thorough comparison between the two databases, ensuring a fair and unbiased assessment.

We use the wiki-Talk dataset, a widely used, real-world graph dataset derived from the edit and discussion history of Wikipedia.

(more…)
More info...

Vector Search in ArangoDB: Practical Insights and Hands-On Examples

Estimated reading time: 5 minutes

Vector search is gaining traction as a go-to tool for handling large, unstructured datasets like text, images, and audio. It works by comparing vector embeddings, numerical representations generated by machine learning models, to find items with similar properties. With the integration of Facebook’s FAISS library, ArangoDB brings scalable, high-performance vector search directly into its core, accessible via AQL (ArangoDB Query Language). Vector Search is now just another, fully-integrated data type/model in ArangoDB’s multi-model approach. The Vector Search capability is currently in Developer Preview and will be in production release in Q1, 2025.

This guide will walk you through setting up vector search, combining it with graph traversal for advanced use cases, and using tools like LangChain to power natural language queries that integrate Vector Search and GraphRAG.

(more…)
More info...

Some Perspectives on HybridRAG in an ArangoDB World

Estimated reading time: 7 minutes

Introduction

Graph databases continue to gain momentum, thanks to their knack for handling intricate relationships and context. Developers and tech leaders are seeing the potential of pairing them with the creative strength of large language models (LLMs). This combination is opening the door to more precise, context-aware answers to natural language prompts. That’s where RAG comes in—it pulls in useful information, whether from raw text (VectorRAG) or a structured knowledge graph (GraphRAG), and feeds it into the LLM. The result? Smarter, more relevant responses that are grounded in actual data.

(more…)
More info...

ArangoDB 3.12 – Performance for all Your Data Models

Estimated reading time: 6 minutes

We are proud to announce the GA release of ArangoDB 3.12!

Congrats to the team and community for the latest ArangoDB release 3.12! ArangoDB 3.12 is focused on greatly improving performance and observability both for the core database and our search offering. In this blog post, we will go through some of the most important changes to ArangoDB and give you an idea of how this can be utilized in your products.

(more…)
More info...

The world is a graph: How Fix reimagines cloud security using a graph in ArangoDB

‘Guest Blog’

Estimated reading time: 5 minutes

In 2015, John Lambers, a Corporate Vice President and Security Fellow at Microsoft wrote “Defenders think in lists. Attackers think in graphs. As long as this is true, attackers win.ˮ

(more…)
More info...

Reintroducing the ArangoDB-RDF Adapter

Estimated reading time: 1 minute

ArangoRDF allows you to export Graphs from ArangoDB into RDFLib, the standard library for working with Resource Description Framework (RDF) in Python, and vice-versa.

(more…)
More info...

Introducing ArangoDB’s Data Loader : Revolutionizing Your Data Migration Experience

Estimated reading time: 7 minutes

At ArangoDB, our commitment to empowering companies, developers, and data enthusiasts with cutting edge tools and resources remains unwavering. Today, we’re thrilled to unveil our latest innovation, the Data Loader, a game-changing feature designed to simplify and streamline the migration of relational databases to ArangoGraph. Let’s dive into what makes Data Loader a must-have tool for your data migration needs.

(more…)
More info...
Introducing the ArangoDB PyG Adapter

Introducing the ArangoDB-PyG Adapter

Estimated reading time: 10 minutes

We are proud to announce the GA 1.0 release of the ArangoDB-PyG Adapter!

The ArangoDB-PyG Adapter exports Graphs from ArangoDB, the multi-model database for graph & beyond, into PyTorch Geometric (PyG), a PyTorch-based Graph Neural Network library, and vice-versa.

On July 29 2022, we introduced the first release of the PyTorch Geometric Adapter to the ArangoML community. We are proud to have PyG as the fourth member of our ArangoDB Adapter Family. You can expect the same developer-friendly adapter options and a helpful getting-started guide via Jupyter Notebook, and stay tuned for an upcoming Lunch & Learn session!

This blog post will serve as a walkthrough of the ArangoDB-PyG Adapter, via its official Jupyter Notebook.

(more…)
More info...
recommendMovies

Integrate ArangoDB with PyTorch Geometric to Build Recommendation Systems

Estimated reading time: 20 minutes

In this blog post, we will build a complete movie recommendation application using ArangoDB and PyTorch Geometric. We will tackle the challenge of building a movie recommendation application by transforming it into the task of link prediction. Our goal is to predict missing links between a user and the movies they have not watched yet.

(more…)
More info...
ArangoSync Blog Post

ArangoSync: A Recipe for Reliability

Estimated reading time: 18 minutes

A detailed journey into deploying a DC2DC replicated environment

When we thought about all the things we wanted to share with our users there were obviously a lot of topics to choose from. Our Enterprise feature; ArangoSync was one of the topics that we have talked about frequently and we have also seen that our customers are keen to implement this in their environments. Mostly because of the secure requirements of having an ArangoDB cluster and all of its data located in multiple locations in case of a severe outage. 

This blog post will help you set up and run an ArangoDB DC2DC environment and will guide you through all the necessary steps. By following the steps described you’ll be sure to end up with a production grade deployment of two ArangoDB clusters communicating with each other with datacenter to datacenter replication.

(more…)
More info...

Get the latest tutorials,
blog posts and news: