ArangoSync Blog Post

ArangoSync: A Recipe for Reliability

Estimated reading time: 18 minutes

A detailed journey into deploying a DC2DC replicated environment

When we thought about all the things we wanted to share with our users there were obviously a lot of topics to choose from. Our Enterprise feature; ArangoSync was one of the topics that we have talked about frequently and we have also seen that our customers are keen to implement this in their environments. Mostly because of the secure requirements of having an ArangoDB cluster and all of its data located in multiple locations in case of a severe outage. 

This blog post will help you set up and run an ArangoDB DC2DC environment and will guide you through all the necessary steps. By following the steps described you’ll be sure to end up with a production grade deployment of two ArangoDB clusters communicating with each other with datacenter to datacenter replication.

(more…)
More info...

ArangoBNB Data Preparation Case Study: Optimizing for Efficiency

Estimated reading time: 18 minutes

This case study covers a data exploration and analysis scenario about modeling data when migrating to ArangoDB. The topics covered in this case study include:

  • Importing data into ArangoDB
  • Developing Application Requirements before modeling
  • Data Analysis and Exploration with AQL

This case study can hopefully be used as a guide as it shows step-by-step instructions and discusses the motivations in exploring and transforming data in preparation for a real-world application.
The information contained in this case study is derived from the development of the ArangoBnB project; a community project developed in JavaScript that is always open to new contributors. The project is an Airbnb clone with a Vue frontend and a React frontend being developed in parallel by the community. It is not necessary to download the project or be familiar with JavaScript for this guide. To see how we are using the data in a real-world project, check out the repository.

(more…)
More info...
b1883261844b8f93363c55d9b4d6b5cd

State of the Art Preprocessing and Filtering with ArangoSearch

Estimated reading time: 10 minutes

Just in case you haven’t heard about ArangoSearch yet, it is a high-performance Full-Text Search engine integrated in ArangoDB (meaning connected with the other data-models and AQL). Feel free to check out ArangoSearch – Full-text search engine including similarity ranking capabilities for more details.

In ArangoDB version 3.7 the ArangoSearch team added Fuzzy Search support (see the comprehensive article Fuzzy search by Andrey Abramov). With Fuzzy Search data preprocessing and filtering becomes even more important. In the upcoming ArangoDB 3.8 release, ArangoSearch efforts will be focused on improving this part. In this post I’m going to uncover some of the new features we are proud to present. 

(more…)
More info...

ArangoDB 3.4 GA
Full-text Search, GeoJSON, Streaming & More

The ability to see your data from various perspectives is the idea of a multi-model database. Having the freedom to combine these perspectives into a single query is the idea behind native multi-model in ArangoDB. Extending this freedom is the main thought behind the release of ArangoDB 3.4.

We’re always excited to put a new version of ArangoDB out there, but this time it’s something special. This new release includes two huge features: a C++ based full-text search and ranking engine called ArangoSearch; and largely extended capabilities for geospatial queries by integrating Google™ S2 Geometry Library and GeoJSON.  Read more

More info...

RC1 ArangoDB 3.4 – What’s new?

For ArangoDB 3.4 we already added 100,000 lines of code, happily deleted 50,000 lines and changed over 13,000 files until today. We merged countless PRs, invested months of problem solving, hacking, testing, hacking and testing again and are super excited to share the feature complete RC1 of ArangoDB 3.4 with you today. Read more

More info...

ArangoSearch architecture overview

In this article, we’re going to dive deeper into our recently released feature preview in Milestone ArangoDB 3.4 – ArangoSearch which provides a rich set of information retrieval capabilities. In particular, we’ll give you an idea of how our search engine works under the hood.

Essentially ArangoSearch consists of 2 components: A search engine and an integration layer. The former is responsible for managing the index, querying and scoring, whereas latter exposes search capabilities to the end user in a convenient way.

Read more

More info...

Milestone ArangoDB 3.4:
ArangoSearch – Information retrieval with ArangoDB

For the upcoming ArangoDB 3.4 release we’ve implemented a set of information retrieval features exposed via new database object `View`. The `View` object is meant to be treated as another data source accessible via AQL and the concept itself is pretty similar to a classical “materialized” view in SQL.

While we are still working on completing the feature, you can already try our retrieval engine in the Milestone of the upcoming ArangoDB 3.4 released today. Read more

More info...

Get the latest tutorials,
blog posts and news: