home shape
scatter plot graphsage

A Comprehensive Case-Study of GraphSage using PyTorchGeometric and Open-Graph-Benchmark

Estimated reading time: 15 minute

This blog post provides a comprehensive study on the theoretical and practical understanding of GraphSage, this notebook will cover:

  • What is GraphSage
  • Neighbourhood Sampling
  • Getting Hands-on Experience with GraphSage and PyTorch Geometric Library
  • Open-Graph-Benchmark’s Amazon Product Recommendation Dataset
  • Creating and Saving a model
  • Generating Graph Embeddings Visualizations and Observations
Check it out on github

Hear More from the Author

Graph Embeddings

Continue Reading

Entity Resolution in ArangoDB

Inside the Avocado Grove: From Canada to Germany and the Digital Marketing of Avocados

Word Embeddings in ArangoDB

Sachin Sharma

Sachin Sharma

Sachin is a Machine Learning Research Engineer at ArangoDB whose aim is to build Intelligent products using thorough research and engineering in the area of Graph Machine Learning. He completed his Masters’s degree in Computer Science with a specialization in Intelligent Systems. He is an AI Enthusiast who has conducted research in the areas of Computer Vision, NLP, and Graph Neural Networks at DFKI (German Research Centre for AI) during his academic career. Sachin also worked on building Machine Learning pipelines at Define Media Gmbh where he worked as a Machine Learning Engineer and Scientist.

Leave a Comment





Get the latest tutorials, blog posts and news: