Qlik (o}

How to Guide:
Connect Qlik to ArangoDB

In this tutorial we will use Qlik Sense Desktop with the Qlik REST
connector for ArangoDB using ArangoDB 3.4.

The Foxx service is not an official Qlik connector, it uses the REST Connector and could be
customized to allow fit for individual needs. Qlik is a trademark of QlikTech International AB

Copyright ArangoDB Inc. d A I'an gO

Qlik REST connector and ArangoDB

In this tutorial we will use Qlik Sense Desktop with the Qlik REST connector and
ArangoDB 3.4.

This tutorial assumes you have access to a running instance of ArangoDB that already
has a collection with data you want to export to Qlik. Note that the connector for
ArangoDB only supports exporting data from a single collection.

Installing the connector

The Qlik connector can be installed as a Foxx service using the ArangoDB web interface
or the Foxx CLI.

To install the service using the web interface:

1. Open the ArangoDB web interface in your browser (e.g. http://localhost:8529
if ArangoDB is running locally).

2. Enter your ArangoDB credentials and select the database from which you want
to export data to Qlik.

3. Select the Services tab on the right, press Add Service and select the qlik-connector
service.

4. Enter a mount point (e.g. /qlik) and press Install.

To install the service using the Foxx CLI use the following command (assuming user
root, database _system and mount point /qlik):

foxx install -u root -P -H http://localhost:8529 -D _system /qlik \
https://github.com/arangodb-foxx/qlik-connector/archive/master.zip

Configuring the connector

Before the Qlik connector is ready to use it needs to be configured:

e Collections: the names of collections in the current database the connector
should have access to (multiple values can be separated by comma but only one
collection can be imported at a time).

e Username and password: credentials that will be used to protect the connector
against unauthorized access. Note that these are different from the credentials
used to access ArangoDB itself and will only be used by Qlik to authenticate
against the connector.

) DB 1

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

To configure the service from the web interface:

1. Select the Services tab and select the mount point where the Qlik connector
service was installed.

2. Select the Settings tab from the top bar.

3. Fillin the configuration values and press the Apply button to save.

To configure the service using the Foxx CLI use the following command (assuming
collection data, username qlik and password qlik123):

foxx config -u root -P -H http://localhost:8529 -D _system /qlik \
collections=data username=qlik password=qlik123

Using the connector in Qlik Sense Desktop

We'll start out by creating a new Qlik app using the Create new app button and calling it
"ArangoDemo". After creating the app for us, Qlik automatically prompts us to open the
app.

Press the large Add data from files and other sources button at the center of the screen to
connect our Qlik app with ArangoDB. If you are using an existing Qlik app that already
contains data, you can also use the Add data option from the app menu in the upper
right corner of the screen.

On the Connect to a new data source screen select the REST data source. The data source
list is sorted alphabetically but you can also find the connector more easily by entering
"REST" in the search box.

) DB 2

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Createa connection - REST

Request

URL

nttp/flacalnost:8528/_ab/_system/qiik/data

Timeout

Method

Request/response body encoding
| utes

The URL should be the full path of the Qlik connector, including the name of the
collection you want to load. Note that we can only load one collection at a time and the
connector needs to be configured to expose that collection.

For example, if we have a local copy of ArangoDB running on our machine, the Qlik
connector was installed at /qlik and the name of the collection we want to import is
data, our URL looks like this: http://localhost:8529/ db/_system/qlik/data

In the Authentication section we need to select Basic as the Authentication Schema. The
Username and Password again need to be taken from the configuration of our Qlik
connector. Remember that these are not the credentials used to connect to ArangoDB
itself. They merely protect the Qlik connector against unauthorized access.

In the Pagination section we also need to select Offset as the Pagination type. This
section is necessary to allow us to fetch more than the initial 100 documents from the
collection. Use the following settings:

e 'Start' parameter name: start
e 'Start' initial value: 0

e 'Count' parameter name: count

e 'Count'initial value: 200

e 'Total records' path: meta/totalCount
e Data indicator path: data

If your documents are very large, you can use a smaller value for the 'Count’ initial
value. A smaller number means fewer documents will be fetched in each request but

@ ArangoDB 3

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Qlik will need to make more requests to import all the data. A larger number will result
in fewer requests but more data in each request.

We'll call the connection "ArangoQIlik". Press the Create button to proceed to the next
step.

Data selection

If the connection succeeded, you should now see an empty table. You may have to
explore the data a bit by drilling down the data tree to the left of the preview table. Try
expanding the "root" entry and checking the box next to the "data" entry below it.

Qi Sence Desiop s “arangaoems | [

Ficlds

Tables

1747
“ z)
A Bod B ®m g B

You can remove the checkbox next to individual columns to avoid that data from being
imported. You can also rename fields by clicking on the column name. Note that glik
automatically generates primary keys in addition to the fields returned by the
connector. Removing these fields may prevent Qlik from loading the data correctly.

Once you're satisfied with your changes, proceed to the next step by pressing the Add
data button. Depending on the size of the collection, this may take a number of
seconds.

Associations and tables

If the data you imported contains nested objects, Qlik may suggest associations.
Otherwise you may want to further massage the imported data in the Tables tab.

O DB 4

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Loading data

Elapsedtime ©@:02:62

Finally you can load the data by pressing the Load data button in the upper right. Note
that this will again take several seconds or minutes depending on the size of the
collection as Qlik transforms and indexes the imported data set.

Creating a data sheet

With all the data imported into Qlik, you can now visualize it by dragging fields onto the
data sheet.

Data Analysis story [A~ \- [Mynewsheet &) v | ¢ ‘ »
My new sheet
- KEY data-_FK Juck. Ei
@ country
| —
date —
—J

ip

latencyMs

Create

of1e Drag and drop objects onto your sheet to start

analyzing your data.

@ ArangoDB 5

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Fiter by table
@ Click to add title Click to add title @ e
Alltables Map

cop o
save ArangeDemo bata st iy new sheet.] >
search .
Q 5 #° Chart suggestions =]
dd

i & m 5 2] ® & 3 Al D E D g, O

Extending the connector with filters

As the Qlik REST connector is a normal Foxx service you can modify the source code to
create your own connector. In this section we will extend the existing connector with an
option to filter the collection dynamically before handing it over to Qlik.

Using the web interface open the settings tab also used to configure the service earlier
and press the download icon in the upper right. This downloads a zip bundle of the
service's source code.

Extract the zip archive to any folder on your computer and open the file index.js in a
code editor.

Defining the operators

There are a lot of useful operators in AQL but for this example we'll stick to the basics.
Add the following in the source code before the line starting with const COLLECTIONS:

O DB 6

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

const OPERATORS = new Map([
["1t", agql.literal("<")],
["1te", agl.literal("<=")],
["gt", agql.literal(">")],
["gte", agl.literal(">=")],
["eq", aql.literal("==")],
["neq", agl.literal("!=")],
["in", aql.literal("in")],
["nin", aqgl.literal("not in")]

1);

This gives us a mapping of safe but human-readable names to AQL operators. The
agl.literal function converts the strings to something we can use in an AQL query
template without having to worry about being misinterpreted as a bind variable.

Extending the query parameters

We want to allow users to specify multiple filters. The easiest way to do this with the
existing GET route is by adding a query parameter that takes a JSON value.

Find one of the lines starting with .queryParam(and add the following immediately
before that line:

.queryParam(
"filters",
joi
.array()
.items(
joi
.object()
.keys ({
fieldName: joi.string().required(),
operator: joi.only(...OPERATORS.keys()).required(),
value: joi.any().required()

1)

.required()

)
.optional(),

"Filter expressions to match the documents against."

)

O DB 7

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

In plain English this matches an optional JSON array containing objects with three
attributes:

o fieldName: a string value we will use to decide which field to compare
e operator: one of the operator names we defined earlier
e value: a value the field will be compared to using the operator

For example, this would limit the results to documents with a statusCode field set to
either 400 or 500:

[{ "fieldName": "statusCode", "operator": "in", "value": [400, 500] }]

Applying the filter

Find the following lines in the source code:
const { start, count } = req.queryParams;

const { query, bindVars } = aql’
FOR doc IN ${collection}
LIMIT ${start}, ${count}
RETURN doc

Replace those lines with the following code:
const { start, count, filters: rawFilters } = req.queryParams;

const filters = rawFilters
? rawFilters.map(
({ fieldName, operator, value }) =>
aql FILTER doc[${fieldName}] ${OPERATORS.get(operator)} ${value}"

)
: [1s

const { query, bindVars } = aql’
FOR doc IN ${collection}
${aqgl.join(filters)}
LIMIT ${start}, ${count}
RETURN doc

) DB 8

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Installing the modified connector

To reflect the changes to the source code in the installed service, first create a zip
archive of your working copy with the saved changes to the index. js file.

To upgrade the service using the web interface:

Open the service's Settings tab and press the Replace button.

Open the Upload tab and press the Upload File button to select the zip file.
Press the Replace button, don't modify any of the options.

Confirm the dialog by pressing the Replace button.

HwWwN =

To upgrade the service using Foxx CLI (assuming filename glik.zip and that the file is
in the current directory):

foxx upgrade -u root -P -H http://localhost:8529 -D _system /qlik
gqlik.zip

Using the filter in Qlik Sense Desktop

Open the Edit Connection dialog or follow the instructions to add a new data source
using the Qlik REST connector but in the section Additional request parameters add

the following for Query parameters:

e Name: filters
e Value: [{"fieldName":"statusCode", "operator":"in","value":[400,500]}]

O DB 9

Copyright ArangoDB Inc.

Qlik REST connector and ArangoDB

Edit connection (REST)

- FieldName"statusCode", operator"-in", value" {468, sna‘ B

Add missing query parameters to fingl request
Query headers

Name Value

Note that you can substitute whatever filters make sense for your data instead.

Once you're satisfied with your filter expression, press the Save button to confirm the
changes or the Create button if you are adding a new data source instead.

@ ArangoDB 10

Copyright ArangoDB Inc.

